Loading…
The variable exponent BV-Sobolev capacity
In this article we study basic properties of the mixed BV-Sobolev capacity with variable exponent p. We give an alternative way to define mixed type BV-Sobolev-space which was originally introduced by Harjulehto, H\"ast\"o, and Latvala. Our definition is based on relaxing the p-energy func...
Saved in:
Published in: | arXiv.org 2011-04 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article we study basic properties of the mixed BV-Sobolev capacity with variable exponent p. We give an alternative way to define mixed type BV-Sobolev-space which was originally introduced by Harjulehto, H\"ast\"o, and Latvala. Our definition is based on relaxing the p-energy functional with respect to the Lebesgue space topology. We prove that this procedure produces a Banach space that coincides with the space defined by Harjulehto et al. for bounded domain and log-H\"older continuous exponent p. Then we show that this induces a type of variable exponent BV-capacity and that this is a Choquet capacity with many usual properties. Finally, we prove that this capacity has the same null sets as the variable exponent Sobolev capacity when p is log-H\"older continuous. |
---|---|
ISSN: | 2331-8422 |