Loading…

The variable exponent BV-Sobolev capacity

In this article we study basic properties of the mixed BV-Sobolev capacity with variable exponent p. We give an alternative way to define mixed type BV-Sobolev-space which was originally introduced by Harjulehto, H\"ast\"o, and Latvala. Our definition is based on relaxing the p-energy func...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2011-04
Main Authors: Hakkarainen, Heikki, Nuortio, Matti
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hakkarainen, Heikki
Nuortio, Matti
description In this article we study basic properties of the mixed BV-Sobolev capacity with variable exponent p. We give an alternative way to define mixed type BV-Sobolev-space which was originally introduced by Harjulehto, H\"ast\"o, and Latvala. Our definition is based on relaxing the p-energy functional with respect to the Lebesgue space topology. We prove that this procedure produces a Banach space that coincides with the space defined by Harjulehto et al. for bounded domain and log-H\"older continuous exponent p. Then we show that this induces a type of variable exponent BV-capacity and that this is a Choquet capacity with many usual properties. Finally, we prove that this capacity has the same null sets as the variable exponent Sobolev capacity when p is log-H\"older continuous.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086982910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086982910</sourcerecordid><originalsourceid>FETCH-proquest_journals_20869829103</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDMlIVShLLMpMTMpJVUitKMjPS80rUXAK0w3OT8rPSS1TSE4sSEzOLKnkYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwMLM0sLI0tDA2PiVAEAwyQwTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086982910</pqid></control><display><type>article</type><title>The variable exponent BV-Sobolev capacity</title><source>Publicly Available Content Database</source><creator>Hakkarainen, Heikki ; Nuortio, Matti</creator><creatorcontrib>Hakkarainen, Heikki ; Nuortio, Matti</creatorcontrib><description>In this article we study basic properties of the mixed BV-Sobolev capacity with variable exponent p. We give an alternative way to define mixed type BV-Sobolev-space which was originally introduced by Harjulehto, H\"ast\"o, and Latvala. Our definition is based on relaxing the p-energy functional with respect to the Lebesgue space topology. We prove that this procedure produces a Banach space that coincides with the space defined by Harjulehto et al. for bounded domain and log-H\"older continuous exponent p. Then we show that this induces a type of variable exponent BV-capacity and that this is a Choquet capacity with many usual properties. Finally, we prove that this capacity has the same null sets as the variable exponent Sobolev capacity when p is log-H\"older continuous.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Banach spaces ; Topology</subject><ispartof>arXiv.org, 2011-04</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086982910?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Hakkarainen, Heikki</creatorcontrib><creatorcontrib>Nuortio, Matti</creatorcontrib><title>The variable exponent BV-Sobolev capacity</title><title>arXiv.org</title><description>In this article we study basic properties of the mixed BV-Sobolev capacity with variable exponent p. We give an alternative way to define mixed type BV-Sobolev-space which was originally introduced by Harjulehto, H\"ast\"o, and Latvala. Our definition is based on relaxing the p-energy functional with respect to the Lebesgue space topology. We prove that this procedure produces a Banach space that coincides with the space defined by Harjulehto et al. for bounded domain and log-H\"older continuous exponent p. Then we show that this induces a type of variable exponent BV-capacity and that this is a Choquet capacity with many usual properties. Finally, we prove that this capacity has the same null sets as the variable exponent Sobolev capacity when p is log-H\"older continuous.</description><subject>Banach spaces</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDMlIVShLLMpMTMpJVUitKMjPS80rUXAK0w3OT8rPSS1TSE4sSEzOLKnkYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwMLM0sLI0tDA2PiVAEAwyQwTQ</recordid><startdate>20110405</startdate><enddate>20110405</enddate><creator>Hakkarainen, Heikki</creator><creator>Nuortio, Matti</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20110405</creationdate><title>The variable exponent BV-Sobolev capacity</title><author>Hakkarainen, Heikki ; Nuortio, Matti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20869829103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Banach spaces</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Hakkarainen, Heikki</creatorcontrib><creatorcontrib>Nuortio, Matti</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hakkarainen, Heikki</au><au>Nuortio, Matti</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The variable exponent BV-Sobolev capacity</atitle><jtitle>arXiv.org</jtitle><date>2011-04-05</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>In this article we study basic properties of the mixed BV-Sobolev capacity with variable exponent p. We give an alternative way to define mixed type BV-Sobolev-space which was originally introduced by Harjulehto, H\"ast\"o, and Latvala. Our definition is based on relaxing the p-energy functional with respect to the Lebesgue space topology. We prove that this procedure produces a Banach space that coincides with the space defined by Harjulehto et al. for bounded domain and log-H\"older continuous exponent p. Then we show that this induces a type of variable exponent BV-capacity and that this is a Choquet capacity with many usual properties. Finally, we prove that this capacity has the same null sets as the variable exponent Sobolev capacity when p is log-H\"older continuous.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2011-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086982910
source Publicly Available Content Database
subjects Banach spaces
Topology
title The variable exponent BV-Sobolev capacity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20variable%20exponent%20BV-Sobolev%20capacity&rft.jtitle=arXiv.org&rft.au=Hakkarainen,%20Heikki&rft.date=2011-04-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086982910%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20869829103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086982910&rft_id=info:pmid/&rfr_iscdi=true