Loading…
The sphere and the cut locus at a tangency point in two-dimensional almost-Riemannian geometry
We study the tangential case in 2-dimensional almost-Riemannian geometry. We analyse the connection with the Martinet case in sub-Riemannian geometry. We compute estimations of the exponential map which allow us to describe the conjugate locus and the cut locus at a tangency point. We prove that thi...
Saved in:
Published in: | arXiv.org 2010-09 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the tangential case in 2-dimensional almost-Riemannian geometry. We analyse the connection with the Martinet case in sub-Riemannian geometry. We compute estimations of the exponential map which allow us to describe the conjugate locus and the cut locus at a tangency point. We prove that this last one generically accumulates at the tangency point as an asymmetric cusp whose branches are separated by the singular set. |
---|---|
ISSN: | 2331-8422 |