Loading…
Intense Star Formation within Resolved Compact Regions in a Galaxy at z=2.3
Massive galaxies in the early Universe have been shown to be forming stars at surprisingly high rates. Prominent examples are dust-obscured galaxies which are luminous when observed at sub-millimeter (sub-mm) wavelengths and which may be forming stars at rates upto 1,000Mo/yr. These intense bursts o...
Saved in:
Published in: | arXiv.org 2010-03 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Massive galaxies in the early Universe have been shown to be forming stars at surprisingly high rates. Prominent examples are dust-obscured galaxies which are luminous when observed at sub-millimeter (sub-mm) wavelengths and which may be forming stars at rates upto 1,000Mo/yr. These intense bursts of star formation are believed to be driven by mergers between gas rich galaxies. However, probing the properties of individual star-forming regions within these galaxies is beyond the spatial resolution and sensitivity of even the largest telescopes at present. Here, we report observations of the sub-mm galaxy SMMJ2135-0102 at redshift z=2.3259 which has been gravitationally magnified by a factor of 32 by a massive foreground galaxy cluster lens. This cosmic magnification, when combined with high-resolution sub-mm imaging, resolves the star-forming regions at a linear scale of just ~100 parsecs. We find that the luminosity densities of these star-forming regions are comparable to the dense cores of giant molecular clouds in the local Universe, but they are ~100x larger and 10^7 times more luminous. Although vigorously star-forming, the underlying physics of the star formation processes at z~2 appears to be similar to that seen in local galaxies even though the energetics are unlike anything found in the present-day Universe. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1003.3674 |