Loading…
Numerical evaluation of the general massive 2-loop 4-denominator self-mass master integral from differential equations
The differential equation in the external invariant p^2 satisfied by the master integral of the general massive 2-loop 4-denominator self-mass diagram is exploited and the expansion of the master integral at p^2=0 is obtained analytically. The system composed by this differential equation with those...
Saved in:
Published in: | arXiv.org 2003-12 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The differential equation in the external invariant p^2 satisfied by the master integral of the general massive 2-loop 4-denominator self-mass diagram is exploited and the expansion of the master integral at p^2=0 is obtained analytically. The system composed by this differential equation with those of the master integrals related to the general massive 2-loop sunrise diagram is numerically solved by the Runge-Kutta method in the complex p^2 plane. A numerical method to obtain results for values of p^2 at and close to thresholds and pseudo-thresholds is discussed in details. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0312189 |