Loading…
Close packing density of polydisperse hard spheres
The most efficient way to pack equally sized spheres isotropically in 3D is known as the random close packed state, which provides a starting point for many approximations in physics and engineering. However, the particle size distribution of a real granular material is never monodisperse. Here we p...
Saved in:
Published in: | arXiv.org 2009-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The most efficient way to pack equally sized spheres isotropically in 3D is known as the random close packed state, which provides a starting point for many approximations in physics and engineering. However, the particle size distribution of a real granular material is never monodisperse. Here we present a simple but accurate approximation for the random close packing density of hard spheres of any size distribution, based upon a mapping onto a one-dimensional problem. To test this theory we performed extensive simulations for mixtures of elastic spheres with hydrodynamic friction. The simulations show a general (but weak) dependence of the final (essentially hard sphere) packing density on fluid viscosity and on particle size, but this can be eliminated by choosing a specific relation between mass and particle size, making the random close packed volume fraction well-defined. Our theory agrees well with the simulations for bidisperse, tridisperse and log-normal distributions, and correctly reproduces the exact limits for large size ratios. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0912.0852 |