Loading…
Paraboson quotients. A braided look at Green ansatz and a generalization
Bosons and Parabosons are described as associative superalgebras, with an infinite number of odd generators. Bosons are shown to be a quotient superalgebra of Parabosons, establishing thus an even algebra epimorphism which is an immediate link between their simple modules. Parabosons are shown to be...
Saved in:
Published in: | arXiv.org 2009-01 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bosons and Parabosons are described as associative superalgebras, with an infinite number of odd generators. Bosons are shown to be a quotient superalgebra of Parabosons, establishing thus an even algebra epimorphism which is an immediate link between their simple modules. Parabosons are shown to be a super-Hopf algebra. The super-Hopf algebraic structure of Parabosons, combined with the projection epimorphism previously stated, provides us with a braided interpretation of the Green's ansatz device and of the parabosonic Fock-like representations. This braided interpretation combined with an old problem leads to the construction of a straightforward generalization of Green's ansatz. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0901.4320 |