Loading…

Groupoidification Made Easy

Groupoidification is a form of categorification in which vector spaces are replaced by groupoids, and linear operators are replaced by spans of groupoids. We introduce this idea with a detailed exposition of 'degroupoidification': a systematic process that turns groupoids and spans into ve...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2008-12
Main Authors: Baez, John C, Hoffnung, Alexander E, Walker, Christopher D
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Groupoidification is a form of categorification in which vector spaces are replaced by groupoids, and linear operators are replaced by spans of groupoids. We introduce this idea with a detailed exposition of 'degroupoidification': a systematic process that turns groupoids and spans into vector spaces and linear operators. Then we present two applications of groupoidification. The first is to Feynman diagrams. The Hilbert space for the quantum harmonic oscillator arises naturally from degroupoidifying the groupoid of finite sets and bijections. This allows for a purely combinatorial interpretation of creation and annihilation operators, their commutation relations, field operators, their normal-ordered powers, and finally Feynman diagrams. The second application is to Hecke algebras. We explain how to groupoidify the Hecke algebra associated to a Dynkin diagram whenever the deformation parameter q is a prime power. We illustrate this with the simplest nontrivial example, coming from the A2 Dynkin diagram. In this example we show that the solution of the Yang-Baxter equation built into the A2 Hecke algebra arises naturally from the axioms of projective geometry applied to the projective plane over the finite field with q elements.
ISSN:2331-8422