Loading…

On the minimal time for the process of analog circuit optimization

The process of analogue circuit optimization is mathematically defined as a controllable dynamic system. In this context the minimization of the processor time of designing can be formulated as a problem of time minimization for transitional process of dynamic system. A special control vector that c...

Full description

Saved in:
Bibliographic Details
Published in:Analog integrated circuits and signal processing 2018-09, Vol.96 (3), p.475-483
Main Author: Zemliak, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The process of analogue circuit optimization is mathematically defined as a controllable dynamic system. In this context the minimization of the processor time of designing can be formulated as a problem of time minimization for transitional process of dynamic system. A special control vector that changes the internal structure of the equations of optimization procedure serves as a principal tool for searching the best strategies with the minimal CPU time. In this case a well-known maximum principle of Pontryagin is the best theoretical approach for finding of the optimum structure of control vector. Practical approach for realization of the maximum principle is based on the analysis of behavior of a Hamiltonian for various strategies of optimization. The possibility of applying the maximum principle to the problem of optimization of electronic circuits is analyzed. It is shown that in spite of the fact that the problem of optimization is formulated as a nonlinear task, and the maximum principle in this case isn’t a sufficient condition for obtaining a minimum of the functional, it is possible to obtain the decision in the form of local minima. The relative acceleration of the CPU time for the best strategy found by means of maximum principle compared with the traditional approach is equal two to three orders of magnitude.
ISSN:0925-1030
1573-1979
DOI:10.1007/s10470-018-1135-3