Loading…
L-functions and random matrices
In 1972 H. L. Montgomery announced a remarkable connection between the distribution of the zeros of the Riemann zeta-function and the distribution of eigenvalues of large random Hermitian matrices. Since then a number of startling developments have occurred making this connection more profound. In p...
Saved in:
Published in: | arXiv.org 2000-05 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In 1972 H. L. Montgomery announced a remarkable connection between the distribution of the zeros of the Riemann zeta-function and the distribution of eigenvalues of large random Hermitian matrices. Since then a number of startling developments have occurred making this connection more profound. In particular, random matrix theory has been found to be an extremely useful predictive tool in the theory of L-functions. In this article we will try to explain these recent developments and indicate some diretions for future investigations. |
---|---|
ISSN: | 2331-8422 |