Loading…

Deepening subwavelength acoustic resonance via metamaterials with universal broadband elliptical microstructure

Slow sound is a frequently exploited phenomenon that metamaterials can induce in order to permit wave energy compression, redirection, imaging, sound absorption, and other special functionalities. Generally, however, such slow sound structures have a poor impedance match to air, particularly at low...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2018-06, Vol.112 (25)
Main Authors: Rowley, William D., Parnell, William J., Abrahams, I. David, Voisey, S. Ruth, Lamb, John, Etaix, Nicolas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Slow sound is a frequently exploited phenomenon that metamaterials can induce in order to permit wave energy compression, redirection, imaging, sound absorption, and other special functionalities. Generally, however, such slow sound structures have a poor impedance match to air, particularly at low frequencies and consequently exhibit strong transmission only in narrow frequency ranges. This therefore strongly restricts their application in wave manipulation devices. In this work, we design a slow sound medium that halves the effective speed of sound in air over a wide range of low frequencies (hence our referral to the microstructure as “broadband”), whilst simultaneously maintaining a near impedance match to air. This is achieved with a rectangular array of acoustically rigid cylinders of elliptical cross section, a microstructure that is motivated by combining transformation acoustics with homogenization. Microstructural parameters are optimized in order to provide the required anisotropic material properties as well as near impedance matching. We then employ this microstructure in order to halve the size of a quarter-wavelength resonator (QWR) or equivalently to halve the resonant frequency of a QWR of a given size. This provides significant space savings in the context of low-frequency tonal noise attenuation in confined environments where the absorbing material is adjacent to the region in which sound propagates, such as in a duct. We employ the term “universal” since we envisage that this microstructure may be employed in a number of diverse applications involving sound manipulation.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.5022197