Loading…
Extended Iterative Scheme for QCD: the Four-Gluon Vertex
We study the self-consistency problem of the generalized Feynman rule (nonperturbatively modified vertex of zeroth perturbative order) for the 4-gluon vertex function in the framework of an extended perturbation scheme accounting for non-analytic coupling dependence through the Lambda scale. Tensori...
Saved in:
Published in: | arXiv.org 1998-08 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the self-consistency problem of the generalized Feynman rule (nonperturbatively modified vertex of zeroth perturbative order) for the 4-gluon vertex function in the framework of an extended perturbation scheme accounting for non-analytic coupling dependence through the Lambda scale. Tensorial structure is restricted to a minimal dynamically closed basis set. The self-consistency conditions are obtained at one loop, in Landau gauge, and at the lowest approximation level (r=1) of interest for QCD. At this level, they are found to be linear in the nonperturbative 4-gluon coefficients, but strongly overdetermined due to the lack of manifest Bose symmetry in the relevant Dyson-Schwinger equation. The observed near decoupling from the 2-and-3-point conditions permits least-squares quasisolutions for given 2-and-3-point input within an effective one-parameter freedom. We present such solutions for N_F=2 massless quarks and for the pure gluon theory, adapted to the 2-and-3-point coefficients determined previously. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.9808155 |