Loading…
Applying water scarcity footprint methodologies to milk production in Finland
Purpose Food production without consuming scarce local freshwater resources in an unsustainable way needs to be ensured. A robust method to assess water scarcity impacts is needed, not only for areas suffering from water scarcity but also in circumstances without water scarcity. This study provides...
Saved in:
Published in: | The international journal of life cycle assessment 2019-02, Vol.24 (2), p.351-361 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
Food production without consuming scarce local freshwater resources in an unsustainable way needs to be ensured. A robust method to assess water scarcity impacts is needed, not only for areas suffering from water scarcity but also in circumstances without water scarcity. This study provides basic knowledge about the current water scarcity footprint methodologies applied to rain-fed agriculture, with Finnish milk production as a case study.
Methods
A typical Finnish “cradle-to-dairy” milk production system was studied. An improved allocation method is suggested taking into account that a lactating cow consumes more drinking water due to milk production. Impact assessment methodologies, including midpoint impact indicators of water deprivation and water scarcity, and the endpoint impact indicators on human health, ecosystems and resources, were applied and evaluated.
Results and discussion
Finnish milk is associated with quite low consumptive water use, amounting to just 6.3 l per litre of packaged skimmed milk according to the suggested allocation method. The stress-weighted water footprint was 4.3 H
2
O
eq
, and the water scarcity impact came to 12.2 l
eq
per litre of Finnish milk. The comparisons between this study and case studies in the literature showed that the water scarcity impact results calculated with the AWARE method are well reasoned, and that mass flows from regions with high water scarcity cause higher water scarcity impact.
Conclusions
We conclude that the water scarcity footprint of Finnish milk in all the studied impact categories is relatively low. The AWARE method for water scarcity footprint assessment seems to be particularly applicable for Finland and is able to identify the critical hotspots of production chains. |
---|---|
ISSN: | 0948-3349 1614-7502 |
DOI: | 10.1007/s11367-018-1512-2 |