Loading…
Universal scaling of distances in complex networks
Universal scaling of distances between vertices of Erdos-Renyi random graphs, scale-free Barabasi-Albert models, science collaboration networks, biological networks, Internet Autonomous Systems and public transport networks are observed. A mean distance between two nodes of degrees k_i and k_j equal...
Saved in:
Published in: | arXiv.org 2005-09 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Universal scaling of distances between vertices of Erdos-Renyi random graphs, scale-free Barabasi-Albert models, science collaboration networks, biological networks, Internet Autonomous Systems and public transport networks are observed. A mean distance between two nodes of degrees k_i and k_j equals to =A-B log(k_i k_j). The scaling is valid over several decades. A simple theory for the appearance of this scaling is presented. Parameters A and B depend on the mean value of a node degree _nn calculated for the nearest neighbors and on network clustering coefficients. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0411160 |