Loading…

Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning

Well dispersed core/shell structure Fe nanopowders (FeNPs) produced by high energy ion beam evaporation (HEIBE) are added to polyacrylonitrile/N, N-Dimethylformamide (PAN/DMF) solution containing vegetable oil to prepare Fe/C porous nanofibers (FeCPNFs) by electrospinning as electromagnetic microwav...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2018-08, Vol.134, p.264-273
Main Authors: Wang, Fengyi, Sun, Yunqiang, Li, Deren, Zhong, Bo, Wu, Zhiguo, Zuo, Shiyong, Yan, De, Zhuo, Renfu, Feng, Juanjuan, Yan, Pengxun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Well dispersed core/shell structure Fe nanopowders (FeNPs) produced by high energy ion beam evaporation (HEIBE) are added to polyacrylonitrile/N, N-Dimethylformamide (PAN/DMF) solution containing vegetable oil to prepare Fe/C porous nanofibers (FeCPNFs) by electrospinning as electromagnetic microwave absorption material. The FeCPNFs have 3D cross-linked network structure with low graphitization degree. The permittivity and permeability behaviors of the composites made from FeCPNFs and wax are studied in the frequency range of 2.00–18.00 GHz. Mainly due to impedance matching, electric loss, magnetic loss, attenuation constant and “geometrical effect” the FeCPNFs have good microwave absorption properties. The reflection loss (RL) of FeCPNFs can reach − 56.6 dB at matching frequency (4.96 GHz) and matching thickness (4.29 mm). The RL value can also reach −26.1 dB at 11.68 GHz, and effective absorption bandwidth (RL ≤ − 10.0 dB) is 3.00 GHz with a thickness of 2.00 mm. Moreover, under the matching frequency and matching thickness a good absorption performance (RL ≤ − 15.0 dB) from 2.00 GHz to 18.00 GHz is obtained. [Display omitted]
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2018.03.081