Loading…
Effect of sward height on the fermentability coefficient and chemical composition of Guinea grass silage
There is a high correlation between sward height and pasture sward structure. Therefore, in tropical grasslands, taking sward height into account has been a much better strategy in rotational stocking management than considering pre‐defined days of growth. Similarly, sward height could be used to de...
Saved in:
Published in: | Grass and forage science 2018-09, Vol.73 (3), p.588-598 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There is a high correlation between sward height and pasture sward structure. Therefore, in tropical grasslands, taking sward height into account has been a much better strategy in rotational stocking management than considering pre‐defined days of growth. Similarly, sward height could be used to determine the moment when tropical grasses present the best ensilability parameters. This study aimed to identify the sward height at which Panicum maximum cv. Mombaça (Guinea grass) provides the highest fermentability coefficient (FC) and to define the combination of additives that best improves the chemical composition of silage. Two trials were carried out in Selvíria, MS, Brazil, from 2015 to 2016. The first year was used to identify the highest FC, and the second year was used to identify the best combination of eight additives (citrus pulp [CIP], homofermentative and heterofermentative LAB, their combinations and control). Statistical analyses were performed using SAS (p |
---|---|
ISSN: | 0142-5242 1365-2494 |
DOI: | 10.1111/gfs.12349 |