Loading…

Effects of Glial Cells on Electrode Impedance Recorded from Neural Prosthetic Devices In Vitro

Neural prosthetic devices hold the potential to be used in the treatment of a variety of neurological disorders. However, their long-term clinical success is currently limited by the ability to achieve stable interfaces between devices and the CNS. Immunohistochemical analysis has shown that cellula...

Full description

Saved in:
Bibliographic Details
Published in:Annals of biomedical engineering 2010-03, Vol.38 (3), p.1031-1047
Main Authors: Frampton, John P, Hynd, Matthew R, Shuler, Michael L, Shain, William
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neural prosthetic devices hold the potential to be used in the treatment of a variety of neurological disorders. However, their long-term clinical success is currently limited by the ability to achieve stable interfaces between devices and the CNS. Immunohistochemical analysis has shown that cellular responses occur in tissue surrounding implanted devices. These cellular responses have been correlated with the impedance measured from device electrodes, leading to the hypothesis that a possible mechanism resulting in inconsistent device performance is the formation of an electrically insulating glial sheath at the implantation site. However, little is known about what cellular and tissue changes affect impedance values and thus contribute to the decreases in electrode performance. We have designed an in vitro system in which cell conditions can be varied within an artificial tissue matrix surrounding a neural prosthetic device. In this study, high-density cultures of glial cells were analyzed by immunohistochemical methods and impedance spectroscopy. Astrocytes and microglia were cultured at various ratios within the matrix surrounding the probes, and were observed over a period of 2 weeks. Cell seeding conditions and confocal images were compared to impedance data to enable the effects of glial cell type on electrode impedance to be determined.
ISSN:0090-6964
1573-9686
DOI:10.1007/s10439-010-9911-y