Loading…
Spectrally arbitrary zero–nonzero patterns and field extensions
An n×n matrix pattern is said to be spectrally arbitrary over a field F provided for every monic polynomial p(t) of degree n, with coefficients from F, there exists a matrix with entries from F, in the given pattern, that has characteristic polynomial p(t). Let E⊆F⊆K be an extension of fields. It is...
Saved in:
Published in: | Linear algebra and its applications 2017-04, Vol.519, p.146-155 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An n×n matrix pattern is said to be spectrally arbitrary over a field F provided for every monic polynomial p(t) of degree n, with coefficients from F, there exists a matrix with entries from F, in the given pattern, that has characteristic polynomial p(t). Let E⊆F⊆K be an extension of fields. It is natural to ask whether a pattern that is spectrally arbitrary over F must also be spectrally arbitrary over E or K. In this article it is shown that if F is dense in K and K is a complete metric space, then any spectrally arbitrary or relaxed spectrally arbitrary pattern over F is relaxed spectrally arbitrary over K. It is also established that if E is an algebraically closed subfield of a field F, then any spectrally arbitrary pattern over F is spectrally arbitrary over E. The 2n Conjecture and the Superpattern Conjecture are explored over fields other than the real numbers. In particular, examples are provided to show that the Superpattern Conjecture is false over the field with 3 elements. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2016.12.040 |