Loading…
Minimal atlases of closed contact manifolds
We study the minimal number C(M,\xi) of contact charts that one needs to cover a closed connected contact manifold (M,\xi). Our basic result is C(M,\xi) \le \dim M + 1. We compute C(M,\xi) for all closed connected contact 3-manifolds: C (M,\xi) = 2 if M = S^3 and \xi is tight, 3 if M = S^3 and \xi i...
Saved in:
Published in: | arXiv.org 2008-07 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the minimal number C(M,\xi) of contact charts that one needs to cover a closed connected contact manifold (M,\xi). Our basic result is C(M,\xi) \le \dim M + 1. We compute C(M,\xi) for all closed connected contact 3-manifolds: C (M,\xi) = 2 if M = S^3 and \xi is tight, 3 if M = S^3 and \xi is overtwisted or if M = #_k (S^2 \times S^1), 4 otherwise. We also show that on every sphere S^{2n+1} there exists a contact structure with C(S^{2n+1},\xi) \ge 3. |
---|---|
ISSN: | 2331-8422 |