Loading…
An ultrametric version of the Maillet-Malgrange theorem for nonlinear q-difference equations
We prove an ultrametric q-difference version of the Maillet-Malgrange theorem, on the Gevrey nature of formal solutions of nonlinear analytic q-difference equations. Since \deg_q and \ord_q define two valuations on {\mathbb C}(q), we obtain, in particular, a result on the growth of the degree in q a...
Saved in:
Published in: | arXiv.org 2008-03 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove an ultrametric q-difference version of the Maillet-Malgrange theorem, on the Gevrey nature of formal solutions of nonlinear analytic q-difference equations. Since \deg_q and \ord_q define two valuations on {\mathbb C}(q), we obtain, in particular, a result on the growth of the degree in q and the order at q of formal solutions of nonlinear q-difference equations, when q is a parameter. We illustrate the main theorem by considering two examples: a q-deformation of ``Painleve' II'', for the nonlinear situation, and a q-difference equation satisfied by the colored Jones polynomials of the figure 8 knots, in the linear case. We consider also a q-analog of the Maillet-Malgrange theorem, both in the complex and in the ultrametric setting, under the assumption that |q|=1 and a classical diophantine condition. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0709.2464 |