Loading…
Exact hydrodynamics of a trapped dipolar Bose-Einstein condensate
We derive the exact density profile of a harmonically trapped Bose-Einstein condensate (BEC) which has dipole-dipole interactions as well as the usual s-wave contact interaction, in the Thomas-Fermi limit. Remarkably, despite the non-local anisotropic nature of the dipolar interaction, the density t...
Saved in:
Published in: | arXiv.org 2003-08 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We derive the exact density profile of a harmonically trapped Bose-Einstein condensate (BEC) which has dipole-dipole interactions as well as the usual s-wave contact interaction, in the Thomas-Fermi limit. Remarkably, despite the non-local anisotropic nature of the dipolar interaction, the density turns out to be an inverted parabola, just as in the pure s-wave case, but with a modified aspect ratio. The ``scaling'' solution approach of Kagan, Surkov, and Shlyapnikov [Phys. Rev. A 54, 1753 (1996)] and Castin and Dum [Phys. Rev. Lett. 77}, 5315 (1996)] for a BEC in a time-dependent trap can therefore be applied to a dipolar BEC, and we use it to obtain the exact monopole and quadrupole shape oscillation frequencies. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0308096 |