Loading…
Hinged Dissection of Polyominoes and Polyforms
A hinged dissection of a set of polygons S is a collection of polygonal pieces hinged together at vertices that can be folded into any member of S. We present a hinged dissection of all edge-to-edge gluings of n congruent copies of a polygon P that join corresponding edges of P. This construction us...
Saved in:
Published in: | arXiv.org 2003-03 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A hinged dissection of a set of polygons S is a collection of polygonal pieces hinged together at vertices that can be folded into any member of S. We present a hinged dissection of all edge-to-edge gluings of n congruent copies of a polygon P that join corresponding edges of P. This construction uses kn pieces, where k is the number of vertices of P. When P is a regular polygon, we show how to reduce the number of pieces to ceiling(k/2)*(n-1). In particular, we consider polyominoes (made up of unit squares), polyiamonds (made up of equilateral triangles), and polyhexes (made up of regular hexagons). We also give a hinged dissection of all polyabolos (made up of right isosceles triangles), which do not fall under the general result mentioned above. Finally, we show that if P can be hinged into Q, then any edge-to-edge gluing of n congruent copies of P can be hinged into any edge-to-edge gluing of n congruent copies of Q. |
---|---|
ISSN: | 2331-8422 |