Loading…
Moment Formulas For The Quasi-Nilpotent DT-Operator
Let T be the quasi-nilpotent DT-operator. By use of Voiculescu's amalgamated R-transform we compute the moments of \((T-\lambda 1)^*(T-\lambda 1)\), where \(\lambda \in \mathbb C\), and the Brown-measure of \(T+\sqrt{\epsilon} Y\), where Y is a circular element *-free from T for \(\epsilon>0...
Saved in:
Published in: | arXiv.org 2004-06 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let T be the quasi-nilpotent DT-operator. By use of Voiculescu's amalgamated R-transform we compute the moments of \((T-\lambda 1)^*(T-\lambda 1)\), where \(\lambda \in \mathbb C\), and the Brown-measure of \(T+\sqrt{\epsilon} Y\), where Y is a circular element *-free from T for \(\epsilon>0\). Moreover we give a new proof of Śniady's formula for the moments \(\tau(((T^*)^k T^k)^n)\) for \(k,n\in \mathbb N\). |
---|---|
ISSN: | 2331-8422 |