Loading…

K(n)-local duality for finite groups and groupoids

We define an inner product (suitably interpreted) on the K(n)-local spectrum LG := L_{K(n)}BG_+, where G is a finite group or groupoid. This gives an inner product on E^*BG_+ for suitable K(n)-local ring spectra E. We relate this to the usual inner product on the representation ring when n=1, and to...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2000-11
Main Author: Strickland, Neil P
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We define an inner product (suitably interpreted) on the K(n)-local spectrum LG := L_{K(n)}BG_+, where G is a finite group or groupoid. This gives an inner product on E^*BG_+ for suitable K(n)-local ring spectra E. We relate this to the usual inner product on the representation ring when n=1, and to the Hopkins-Kuhn-Ravenel generalised character theory. We show that LG is a Frobenius algebra object in the K(n)-local stable category, and we recall the connection between Frobenius algebras and topological quantum field theories to help analyse this structure. In many places we find it convenient to use groupoids rather than groups, and to assist with this we include a detailed treatment of the homotopy theory of groupoids. We also explain some striking formal similarities between our duality and Atiyah-Poincare duality for manifolds.
ISSN:2331-8422