Loading…
5-move equivalence classes of links and their algebraic invariants
We start a systematic analysis of links up to 5-move equivalence. Our motivation is to develop tools which later can be used to study skein modules based on the skein relation being deformation of a 5-move (in an analogous way as the Kauffman skein module is a deformation of a 2-move, i.e. a crossin...
Saved in:
Published in: | arXiv.org 2007-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We start a systematic analysis of links up to 5-move equivalence. Our motivation is to develop tools which later can be used to study skein modules based on the skein relation being deformation of a 5-move (in an analogous way as the Kauffman skein module is a deformation of a 2-move, i.e. a crossing change). Our main tools are Jones and Kauffman polynomials and the fundamental group of the 2-fold branch cover of S^3 along a link. We use also the fact that a 5-move is a composition of two rational \pm (2,2)-moves (i.e. \pm 5/2-moves) and rational moves can be analyzed using the group of Fox colorings and its non-abelian version, the Burnside group of a link. One curious observation is that links related by one (2,2)-move are not 5-move equivalent. In particular, we partially classify (up to 5-moves) 3-braids, pretzel and Montesinos links, and links up to 9 crossings. |
---|---|
ISSN: | 2331-8422 |