Loading…

5-move equivalence classes of links and their algebraic invariants

We start a systematic analysis of links up to 5-move equivalence. Our motivation is to develop tools which later can be used to study skein modules based on the skein relation being deformation of a 5-move (in an analogous way as the Kauffman skein module is a deformation of a 2-move, i.e. a crossin...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2007-12
Main Authors: Dabkowski, Mieczyslaw K, Ishiwata, Makiko, Przytycki, Jozef H
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dabkowski, Mieczyslaw K
Ishiwata, Makiko
Przytycki, Jozef H
description We start a systematic analysis of links up to 5-move equivalence. Our motivation is to develop tools which later can be used to study skein modules based on the skein relation being deformation of a 5-move (in an analogous way as the Kauffman skein module is a deformation of a 2-move, i.e. a crossing change). Our main tools are Jones and Kauffman polynomials and the fundamental group of the 2-fold branch cover of S^3 along a link. We use also the fact that a 5-move is a composition of two rational \pm (2,2)-moves (i.e. \pm 5/2-moves) and rational moves can be analyzed using the group of Fox colorings and its non-abelian version, the Burnside group of a link. One curious observation is that links related by one (2,2)-move are not 5-move equivalent. In particular, we partially classify (up to 5-moves) 3-braids, pretzel and Montesinos links, and links up to 9 crossings.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2092178937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092178937</sourcerecordid><originalsourceid>FETCH-proquest_journals_20921789373</originalsourceid><addsrcrecordid>eNqNykEOgjAQQNHGxESi3GES1yR1KgJbjcYDuCcjDlqsrXSA8-vCA7j6i_dnKkFjNlm5RVyoVKTTWuOuwDw3idrn2StMDNyPdiLHvmFoHImwQGjBWf8UIH-D4cE2Ark7XyPZBqyfKFryg6zUvCUnnP66VOvT8XI4Z-8Y-pFlqLswRv-lGnWFm6KsTGH-uz6wCzne</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092178937</pqid></control><display><type>article</type><title>5-move equivalence classes of links and their algebraic invariants</title><source>Publicly Available Content (ProQuest)</source><creator>Dabkowski, Mieczyslaw K ; Ishiwata, Makiko ; Przytycki, Jozef H</creator><creatorcontrib>Dabkowski, Mieczyslaw K ; Ishiwata, Makiko ; Przytycki, Jozef H</creatorcontrib><description>We start a systematic analysis of links up to 5-move equivalence. Our motivation is to develop tools which later can be used to study skein modules based on the skein relation being deformation of a 5-move (in an analogous way as the Kauffman skein module is a deformation of a 2-move, i.e. a crossing change). Our main tools are Jones and Kauffman polynomials and the fundamental group of the 2-fold branch cover of S^3 along a link. We use also the fact that a 5-move is a composition of two rational \pm (2,2)-moves (i.e. \pm 5/2-moves) and rational moves can be analyzed using the group of Fox colorings and its non-abelian version, the Burnside group of a link. One curious observation is that links related by one (2,2)-move are not 5-move equivalent. In particular, we partially classify (up to 5-moves) 3-braids, pretzel and Montesinos links, and links up to 9 crossings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Braiding ; Deformation ; Equivalence ; Links ; Modules ; Polynomials</subject><ispartof>arXiv.org, 2007-12</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/0712.0985.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2092178937?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,36991,44569</link.rule.ids></links><search><creatorcontrib>Dabkowski, Mieczyslaw K</creatorcontrib><creatorcontrib>Ishiwata, Makiko</creatorcontrib><creatorcontrib>Przytycki, Jozef H</creatorcontrib><title>5-move equivalence classes of links and their algebraic invariants</title><title>arXiv.org</title><description>We start a systematic analysis of links up to 5-move equivalence. Our motivation is to develop tools which later can be used to study skein modules based on the skein relation being deformation of a 5-move (in an analogous way as the Kauffman skein module is a deformation of a 2-move, i.e. a crossing change). Our main tools are Jones and Kauffman polynomials and the fundamental group of the 2-fold branch cover of S^3 along a link. We use also the fact that a 5-move is a composition of two rational \pm (2,2)-moves (i.e. \pm 5/2-moves) and rational moves can be analyzed using the group of Fox colorings and its non-abelian version, the Burnside group of a link. One curious observation is that links related by one (2,2)-move are not 5-move equivalent. In particular, we partially classify (up to 5-moves) 3-braids, pretzel and Montesinos links, and links up to 9 crossings.</description><subject>Braiding</subject><subject>Deformation</subject><subject>Equivalence</subject><subject>Links</subject><subject>Modules</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykEOgjAQQNHGxESi3GES1yR1KgJbjcYDuCcjDlqsrXSA8-vCA7j6i_dnKkFjNlm5RVyoVKTTWuOuwDw3idrn2StMDNyPdiLHvmFoHImwQGjBWf8UIH-D4cE2Ark7XyPZBqyfKFryg6zUvCUnnP66VOvT8XI4Z-8Y-pFlqLswRv-lGnWFm6KsTGH-uz6wCzne</recordid><startdate>20071206</startdate><enddate>20071206</enddate><creator>Dabkowski, Mieczyslaw K</creator><creator>Ishiwata, Makiko</creator><creator>Przytycki, Jozef H</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20071206</creationdate><title>5-move equivalence classes of links and their algebraic invariants</title><author>Dabkowski, Mieczyslaw K ; Ishiwata, Makiko ; Przytycki, Jozef H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20921789373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Braiding</topic><topic>Deformation</topic><topic>Equivalence</topic><topic>Links</topic><topic>Modules</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Dabkowski, Mieczyslaw K</creatorcontrib><creatorcontrib>Ishiwata, Makiko</creatorcontrib><creatorcontrib>Przytycki, Jozef H</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dabkowski, Mieczyslaw K</au><au>Ishiwata, Makiko</au><au>Przytycki, Jozef H</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>5-move equivalence classes of links and their algebraic invariants</atitle><jtitle>arXiv.org</jtitle><date>2007-12-06</date><risdate>2007</risdate><eissn>2331-8422</eissn><abstract>We start a systematic analysis of links up to 5-move equivalence. Our motivation is to develop tools which later can be used to study skein modules based on the skein relation being deformation of a 5-move (in an analogous way as the Kauffman skein module is a deformation of a 2-move, i.e. a crossing change). Our main tools are Jones and Kauffman polynomials and the fundamental group of the 2-fold branch cover of S^3 along a link. We use also the fact that a 5-move is a composition of two rational \pm (2,2)-moves (i.e. \pm 5/2-moves) and rational moves can be analyzed using the group of Fox colorings and its non-abelian version, the Burnside group of a link. One curious observation is that links related by one (2,2)-move are not 5-move equivalent. In particular, we partially classify (up to 5-moves) 3-braids, pretzel and Montesinos links, and links up to 9 crossings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2007-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2092178937
source Publicly Available Content (ProQuest)
subjects Braiding
Deformation
Equivalence
Links
Modules
Polynomials
title 5-move equivalence classes of links and their algebraic invariants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=5-move%20equivalence%20classes%20of%20links%20and%20their%20algebraic%20invariants&rft.jtitle=arXiv.org&rft.au=Dabkowski,%20Mieczyslaw%20K&rft.date=2007-12-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2092178937%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20921789373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2092178937&rft_id=info:pmid/&rfr_iscdi=true