Loading…
Surface engineering of nickel selenide for an enhanced intrinsic overall water splitting ability
The development of efficient catalytic electrodes towards the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) is at the heart of renewable-energy technologies. Despite the tremendous efforts towards engineering electrode schemes for increasing exposed surface areas and acti...
Saved in:
Published in: | Materials chemistry frontiers 2018-09, Vol.2 (9), p.1725-1731 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of efficient catalytic electrodes towards the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) is at the heart of renewable-energy technologies. Despite the tremendous efforts towards engineering electrode schemes for increasing exposed surface areas and active sites, improving intrinsic catalytic activity still remains a great challenge. Here, we develop a surface-polyaniline (PANI) functionalized nickel selenide (NiSe–PANI) electrode with great performance enhancement for both the HER and OER. The decorated PANI layer subtly modulates the surface electronic structures of NiSe, with a surface-optimized selenium-enriched configuration for the HER and enhanced generation of Ni
III/IV
active species when oxidized for the OER. When used as a bifunctional electrocatalyst for overall water splitting, the NiSe–PANI electrode displays excellent performance, with a current density of ∼10 mA cm
−2
at an applied voltage of 1.53 V during a long-term electrolysis test, and outperforms the Pt and IrO
2
combination as the benchmark and most of the earth-abundant material-based bifunctional catalysts. Similar PANI–functionalization on other bifunctional nickel chalcogenide electrodes also exhibits obviously enhanced performance for overall water splitting, demonstrating the wider applicability of intrinsic activity enhancement
via
a surface electronic modulation strategy. |
---|---|
ISSN: | 2052-1537 2052-1537 |
DOI: | 10.1039/C8QM00292D |