Loading…
Upper and Lower Bounds on Zero-Sum Generalized Schur Numbers
Let \(S_{\mathfrak{z}}(k,r)\) be the least positive integer such that for any \(r\)-coloring \(\chi : \{1,2,\dots,S_{\mathfrak{z}}(k,r)\} \longrightarrow \{1, 2, \dots, r\}\), there is a sequence \(x_1, x_2, \dots, x_k\) such that \(\sum_{i=1}^{k-1} x_i = x_k\), and \(\sum_{i=1}^{k} \chi(x_i) \equiv...
Saved in:
Published in: | arXiv.org 2018-08 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let \(S_{\mathfrak{z}}(k,r)\) be the least positive integer such that for any \(r\)-coloring \(\chi : \{1,2,\dots,S_{\mathfrak{z}}(k,r)\} \longrightarrow \{1, 2, \dots, r\}\), there is a sequence \(x_1, x_2, \dots, x_k\) such that \(\sum_{i=1}^{k-1} x_i = x_k\), and \(\sum_{i=1}^{k} \chi(x_i) \equiv 0 \pmod{r}\). We show that when \(k\) is greater than \(r\), \(kr - r - 1 \le S_{\mathfrak{z}}(k,r) \le kr - 1\), and when \(r\) is an odd prime, \(S_{\mathfrak{z}}(k,r)\) is in fact equal to \(kr - r\). |
---|---|
ISSN: | 2331-8422 |