Loading…
Eliminating Unstable Tests in Floating-Point Programs
Round-off errors arising from the difference between real numbers and their floating-point representation cause the control flow of conditional floating-point statements to deviate from the ideal flow of the real-number computation. This problem, which is called test instability, may result in a sig...
Saved in:
Published in: | arXiv.org 2018-12 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Round-off errors arising from the difference between real numbers and their floating-point representation cause the control flow of conditional floating-point statements to deviate from the ideal flow of the real-number computation. This problem, which is called test instability, may result in a significant difference between the computation of a floating-point program and the expected output in real arithmetic. In this paper, a formally proven program transformation is proposed to detect and correct the effects of unstable tests. The output of this transformation is a floating-point program that is guaranteed to return either the result of the original floating-point program when it can be assured that both its real and its floating-point flows agree or a warning when these flows may diverge. The proposed approach is illustrated with the transformation of the core computation of a polygon containment algorithm developed at NASA that is used in a geofencing system for unmanned aircraft systems. |
---|---|
ISSN: | 2331-8422 |