Loading…
Salivary Esterase Activity and Its Association with the Biodegradation of Dental Composites
Pseudocholinesterase (PCE) and cholesterol esterase (CE) can hydrolyze bisphenylglycidyl dimethacrylate (bisGMA) and triethylene glycol dimethacrylate (TEGDMA) monomers. This study will test the hypothesis that enzyme activities showing CE and PCE character are found in human saliva at levels suffic...
Saved in:
Published in: | Journal of dental research 2004-01, Vol.83 (1), p.22-26 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pseudocholinesterase (PCE) and cholesterol esterase (CE) can hydrolyze bisphenylglycidyl dimethacrylate (bisGMA) and triethylene glycol dimethacrylate (TEGDMA) monomers. This study will test the hypothesis that enzyme activities showing CE and PCE character are found in human saliva at levels sufficient to hydrolyze ester-containing composites important to restorative denstistry. The study also seeks to ask if the active sites of CE and PCE with respect to composite could be inhibited. Photo-polymerized model composite resin was incubated in PCE and CE solutions, in the presence and absence of a specific esterase inhibitor, phenylmethylsulfonyl fluoride (PMSF). Incubation solutions were analyzed for resin degradation products by high-performance liquid chromatography (HPLC), UV spectroscopy, and mass spectrometry. Saliva was found to contain both hydrolase activities at levels that could degrade composite resins. PMSF inhibited the composite degradation, indicating a material hydrolysis mechanism similar to the enzymes’ common function. |
---|---|
ISSN: | 0022-0345 1544-0591 |
DOI: | 10.1177/154405910408300105 |