Loading…
Numerical approach for stagnation point flow of Sutterby fluid impinging to Cattaneo–Christov heat flux model
The present study examines the stagnation point flow of a non-Newtonian fluid along with the Cattaneo–Christov heat flux model. The coupled system is simplified using suitable similar solutions and solved numerically by incorporating the shooting method with the Runge–Kutta of order five. The motiva...
Saved in:
Published in: | Pramāṇa 2018-11, Vol.91 (5), p.1-7, Article 61 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present study examines the stagnation point flow of a non-Newtonian fluid along with the Cattaneo–Christov heat flux model. The coupled system is simplified using suitable similar solutions and solved numerically by incorporating the shooting method with the Runge–Kutta of order five. The motivation is to analyse the heat transfer using an amended form of Fourier law of heat conduction known as the Cattaneo–Christov heat flux model. The influences of significant parameters are taken into the account. The computed results of velocity and temperature profiles are displayed by means of graphs. The notable findings are as follows. The viscous and thermal boundary layer exhibits opposite trends for Reynolds number, Deborah number and power-law index. The shear stress at the wall displays reverse patterns for shear thinning and shear thickening fluids. The Prandtl number contributes to increasing the Nusselt number while the Deborah number of heat flux plays the role of reducing it. |
---|---|
ISSN: | 0304-4289 0973-7111 |
DOI: | 10.1007/s12043-018-1640-z |