Loading…

Numerical approach for stagnation point flow of Sutterby fluid impinging to Cattaneo–Christov heat flux model

The present study examines the stagnation point flow of a non-Newtonian fluid along with the Cattaneo–Christov heat flux model. The coupled system is simplified using suitable similar solutions and solved numerically by incorporating the shooting method with the Runge–Kutta of order five. The motiva...

Full description

Saved in:
Bibliographic Details
Published in:Pramāṇa 2018-11, Vol.91 (5), p.1-7, Article 61
Main Authors: Azhar, Ehtsham, Iqbal, Z, Ijaz, S, Maraj, E N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study examines the stagnation point flow of a non-Newtonian fluid along with the Cattaneo–Christov heat flux model. The coupled system is simplified using suitable similar solutions and solved numerically by incorporating the shooting method with the Runge–Kutta of order five. The motivation is to analyse the heat transfer using an amended form of Fourier law of heat conduction known as the Cattaneo–Christov heat flux model. The influences of significant parameters are taken into the account. The computed results of velocity and temperature profiles are displayed by means of graphs. The notable findings are as follows. The viscous and thermal boundary layer exhibits opposite trends for Reynolds number, Deborah number and power-law index. The shear stress at the wall displays reverse patterns for shear thinning and shear thickening fluids. The Prandtl number contributes to increasing the Nusselt number while the Deborah number of heat flux plays the role of reducing it.
ISSN:0304-4289
0973-7111
DOI:10.1007/s12043-018-1640-z