Loading…

Numerical approach for stagnation point flow of Sutterby fluid impinging to Cattaneo–Christov heat flux model

The present study examines the stagnation point flow of a non-Newtonian fluid along with the Cattaneo–Christov heat flux model. The coupled system is simplified using suitable similar solutions and solved numerically by incorporating the shooting method with the Runge–Kutta of order five. The motiva...

Full description

Saved in:
Bibliographic Details
Published in:Pramāṇa 2018-11, Vol.91 (5), p.1-7, Article 61
Main Authors: Azhar, Ehtsham, Iqbal, Z, Ijaz, S, Maraj, E N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-603816ec3b8bca2bddf71276eb0a182370886d686dd401fd87a6d486bbeadb073
cites cdi_FETCH-LOGICAL-c316t-603816ec3b8bca2bddf71276eb0a182370886d686dd401fd87a6d486bbeadb073
container_end_page 7
container_issue 5
container_start_page 1
container_title Pramāṇa
container_volume 91
creator Azhar, Ehtsham
Iqbal, Z
Ijaz, S
Maraj, E N
description The present study examines the stagnation point flow of a non-Newtonian fluid along with the Cattaneo–Christov heat flux model. The coupled system is simplified using suitable similar solutions and solved numerically by incorporating the shooting method with the Runge–Kutta of order five. The motivation is to analyse the heat transfer using an amended form of Fourier law of heat conduction known as the Cattaneo–Christov heat flux model. The influences of significant parameters are taken into the account. The computed results of velocity and temperature profiles are displayed by means of graphs. The notable findings are as follows. The viscous and thermal boundary layer exhibits opposite trends for Reynolds number, Deborah number and power-law index. The shear stress at the wall displays reverse patterns for shear thinning and shear thickening fluids. The Prandtl number contributes to increasing the Nusselt number while the Deborah number of heat flux plays the role of reducing it.
doi_str_mv 10.1007/s12043-018-1640-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2099969215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099969215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-603816ec3b8bca2bddf71276eb0a182370886d686dd401fd87a6d486bbeadb073</originalsourceid><addsrcrecordid>eNp1kM9KxDAQxosouK4-gLeA5-pM003ToxT_gehBPYe0SXe7tE1NUnX35Dv4hj6JWSp4EmaYYfh-M8wXRacI5wiQXThMIKUxII-RpRBv96IZ5BmNM0TcDz2FNE4Tnh9GR86tATBP6WIWmYex07apZEvkMFgjqxWpjSXOy2UvfWN6Mpim96RuzTsxNXkavde23ITB2CjSdEPTL0MQb0ghvZe9Nt-fX8XKNs6bN7LScgePH6QzSrfH0UEtW6dPfus8erm-ei5u4_vHm7vi8j6uKDIfM6Acma5oyctKJqVSdYZJxnQJEnlCM-CcKRZSpYC14plkKuWsLLVUJWR0Hp1Ne8NPr6N2XqzNaPtwUiSQ5znLE1wEFU6qyhrnrK7FYJtO2o1AEDtfxeSrCL6Kna9iG5hkYlzQ9ktt_zb_D_0ALZl-dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099969215</pqid></control><display><type>article</type><title>Numerical approach for stagnation point flow of Sutterby fluid impinging to Cattaneo–Christov heat flux model</title><source>Indian Academy of Sciences</source><source>Springer Link</source><creator>Azhar, Ehtsham ; Iqbal, Z ; Ijaz, S ; Maraj, E N</creator><creatorcontrib>Azhar, Ehtsham ; Iqbal, Z ; Ijaz, S ; Maraj, E N</creatorcontrib><description>The present study examines the stagnation point flow of a non-Newtonian fluid along with the Cattaneo–Christov heat flux model. The coupled system is simplified using suitable similar solutions and solved numerically by incorporating the shooting method with the Runge–Kutta of order five. The motivation is to analyse the heat transfer using an amended form of Fourier law of heat conduction known as the Cattaneo–Christov heat flux model. The influences of significant parameters are taken into the account. The computed results of velocity and temperature profiles are displayed by means of graphs. The notable findings are as follows. The viscous and thermal boundary layer exhibits opposite trends for Reynolds number, Deborah number and power-law index. The shear stress at the wall displays reverse patterns for shear thinning and shear thickening fluids. The Prandtl number contributes to increasing the Nusselt number while the Deborah number of heat flux plays the role of reducing it.</description><identifier>ISSN: 0304-4289</identifier><identifier>EISSN: 0973-7111</identifier><identifier>DOI: 10.1007/s12043-018-1640-z</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astronomy ; Astrophysics and Astroparticles ; Computational fluid dynamics ; Conduction heating ; Conductive heat transfer ; Deborah number ; Fluid flow ; Fourier law ; Heat flux ; Mathematical models ; Newtonian fluids ; Non Newtonian fluids ; Observations and Techniques ; Physics ; Physics and Astronomy ; Prandtl number ; Reynolds number ; Runge-Kutta method ; Shear stress ; Shear thickening (liquids) ; Shear thinning (liquids) ; Stagnation point ; Temperature profiles ; Thermal boundary layer ; Thickening ; Viscosity</subject><ispartof>Pramāṇa, 2018-11, Vol.91 (5), p.1-7, Article 61</ispartof><rights>Indian Academy of Sciences 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-603816ec3b8bca2bddf71276eb0a182370886d686dd401fd87a6d486bbeadb073</citedby><cites>FETCH-LOGICAL-c316t-603816ec3b8bca2bddf71276eb0a182370886d686dd401fd87a6d486bbeadb073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Azhar, Ehtsham</creatorcontrib><creatorcontrib>Iqbal, Z</creatorcontrib><creatorcontrib>Ijaz, S</creatorcontrib><creatorcontrib>Maraj, E N</creatorcontrib><title>Numerical approach for stagnation point flow of Sutterby fluid impinging to Cattaneo–Christov heat flux model</title><title>Pramāṇa</title><addtitle>Pramana - J Phys</addtitle><description>The present study examines the stagnation point flow of a non-Newtonian fluid along with the Cattaneo–Christov heat flux model. The coupled system is simplified using suitable similar solutions and solved numerically by incorporating the shooting method with the Runge–Kutta of order five. The motivation is to analyse the heat transfer using an amended form of Fourier law of heat conduction known as the Cattaneo–Christov heat flux model. The influences of significant parameters are taken into the account. The computed results of velocity and temperature profiles are displayed by means of graphs. The notable findings are as follows. The viscous and thermal boundary layer exhibits opposite trends for Reynolds number, Deborah number and power-law index. The shear stress at the wall displays reverse patterns for shear thinning and shear thickening fluids. The Prandtl number contributes to increasing the Nusselt number while the Deborah number of heat flux plays the role of reducing it.</description><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Computational fluid dynamics</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Deborah number</subject><subject>Fluid flow</subject><subject>Fourier law</subject><subject>Heat flux</subject><subject>Mathematical models</subject><subject>Newtonian fluids</subject><subject>Non Newtonian fluids</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Prandtl number</subject><subject>Reynolds number</subject><subject>Runge-Kutta method</subject><subject>Shear stress</subject><subject>Shear thickening (liquids)</subject><subject>Shear thinning (liquids)</subject><subject>Stagnation point</subject><subject>Temperature profiles</subject><subject>Thermal boundary layer</subject><subject>Thickening</subject><subject>Viscosity</subject><issn>0304-4289</issn><issn>0973-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KxDAQxosouK4-gLeA5-pM003ToxT_gehBPYe0SXe7tE1NUnX35Dv4hj6JWSp4EmaYYfh-M8wXRacI5wiQXThMIKUxII-RpRBv96IZ5BmNM0TcDz2FNE4Tnh9GR86tATBP6WIWmYex07apZEvkMFgjqxWpjSXOy2UvfWN6Mpim96RuzTsxNXkavde23ITB2CjSdEPTL0MQb0ghvZe9Nt-fX8XKNs6bN7LScgePH6QzSrfH0UEtW6dPfus8erm-ei5u4_vHm7vi8j6uKDIfM6Acma5oyctKJqVSdYZJxnQJEnlCM-CcKRZSpYC14plkKuWsLLVUJWR0Hp1Ne8NPr6N2XqzNaPtwUiSQ5znLE1wEFU6qyhrnrK7FYJtO2o1AEDtfxeSrCL6Kna9iG5hkYlzQ9ktt_zb_D_0ALZl-dQ</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Azhar, Ehtsham</creator><creator>Iqbal, Z</creator><creator>Ijaz, S</creator><creator>Maraj, E N</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>Numerical approach for stagnation point flow of Sutterby fluid impinging to Cattaneo–Christov heat flux model</title><author>Azhar, Ehtsham ; Iqbal, Z ; Ijaz, S ; Maraj, E N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-603816ec3b8bca2bddf71276eb0a182370886d686dd401fd87a6d486bbeadb073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Computational fluid dynamics</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Deborah number</topic><topic>Fluid flow</topic><topic>Fourier law</topic><topic>Heat flux</topic><topic>Mathematical models</topic><topic>Newtonian fluids</topic><topic>Non Newtonian fluids</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Prandtl number</topic><topic>Reynolds number</topic><topic>Runge-Kutta method</topic><topic>Shear stress</topic><topic>Shear thickening (liquids)</topic><topic>Shear thinning (liquids)</topic><topic>Stagnation point</topic><topic>Temperature profiles</topic><topic>Thermal boundary layer</topic><topic>Thickening</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azhar, Ehtsham</creatorcontrib><creatorcontrib>Iqbal, Z</creatorcontrib><creatorcontrib>Ijaz, S</creatorcontrib><creatorcontrib>Maraj, E N</creatorcontrib><collection>CrossRef</collection><jtitle>Pramāṇa</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azhar, Ehtsham</au><au>Iqbal, Z</au><au>Ijaz, S</au><au>Maraj, E N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical approach for stagnation point flow of Sutterby fluid impinging to Cattaneo–Christov heat flux model</atitle><jtitle>Pramāṇa</jtitle><stitle>Pramana - J Phys</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>91</volume><issue>5</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>61</artnum><issn>0304-4289</issn><eissn>0973-7111</eissn><abstract>The present study examines the stagnation point flow of a non-Newtonian fluid along with the Cattaneo–Christov heat flux model. The coupled system is simplified using suitable similar solutions and solved numerically by incorporating the shooting method with the Runge–Kutta of order five. The motivation is to analyse the heat transfer using an amended form of Fourier law of heat conduction known as the Cattaneo–Christov heat flux model. The influences of significant parameters are taken into the account. The computed results of velocity and temperature profiles are displayed by means of graphs. The notable findings are as follows. The viscous and thermal boundary layer exhibits opposite trends for Reynolds number, Deborah number and power-law index. The shear stress at the wall displays reverse patterns for shear thinning and shear thickening fluids. The Prandtl number contributes to increasing the Nusselt number while the Deborah number of heat flux plays the role of reducing it.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12043-018-1640-z</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4289
ispartof Pramāṇa, 2018-11, Vol.91 (5), p.1-7, Article 61
issn 0304-4289
0973-7111
language eng
recordid cdi_proquest_journals_2099969215
source Indian Academy of Sciences; Springer Link
subjects Astronomy
Astrophysics and Astroparticles
Computational fluid dynamics
Conduction heating
Conductive heat transfer
Deborah number
Fluid flow
Fourier law
Heat flux
Mathematical models
Newtonian fluids
Non Newtonian fluids
Observations and Techniques
Physics
Physics and Astronomy
Prandtl number
Reynolds number
Runge-Kutta method
Shear stress
Shear thickening (liquids)
Shear thinning (liquids)
Stagnation point
Temperature profiles
Thermal boundary layer
Thickening
Viscosity
title Numerical approach for stagnation point flow of Sutterby fluid impinging to Cattaneo–Christov heat flux model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20approach%20for%20stagnation%20point%20flow%20of%20Sutterby%20fluid%20impinging%20to%20Cattaneo%E2%80%93Christov%20heat%20flux%20model&rft.jtitle=Prama%CC%84n%CC%A3a&rft.au=Azhar,%20Ehtsham&rft.date=2018-11-01&rft.volume=91&rft.issue=5&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=61&rft.issn=0304-4289&rft.eissn=0973-7111&rft_id=info:doi/10.1007/s12043-018-1640-z&rft_dat=%3Cproquest_cross%3E2099969215%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-603816ec3b8bca2bddf71276eb0a182370886d686dd401fd87a6d486bbeadb073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2099969215&rft_id=info:pmid/&rfr_iscdi=true