Loading…

Dynamic characteristics of horizontally curved bridges

Horizontally curved bridges have complicated dynamic characteristics because of their irregular geometry and nonuniform mass and stiffness distributions. This paper aims to develop a simplified and practical method for the calculation of the natural frequencies and mode shapes of horizontally curved...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vibration and control 2018-10, Vol.24 (19), p.4465-4483
Main Authors: Amjadian, Mohsen, Agrawal, Anil K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Horizontally curved bridges have complicated dynamic characteristics because of their irregular geometry and nonuniform mass and stiffness distributions. This paper aims to develop a simplified and practical method for the calculation of the natural frequencies and mode shapes of horizontally curved bridges that would be of interest to bridge engineers for the estimation of the seismic response of these types of bridges. For this purpose, a simple three-degree-of-freedom (3DOF) dynamic model for free vibration equation of this type of bridge has been developed. It is shown that the translational motion of the deck of horizontally curved bridges in the direction that is perpendicular to their axis of symmetry is always coupled with the rotational motion of the deck, regardless of the location of the stiffness center. The model is further exploited to develop closed-form formulas for the estimation of the maximum displacements of the corners of the deck of one-way asymmetric horizontally curved bridges. The accuracy of the model is verified by finite-element model of a horizontally curved bridge prototype in OpenSEES. Finally, the model is utilized to study the influence of the location of the stiffness center with respect to the deck curvature center on the natural frequency and the maximum displacements of the corners of the deck for different curvatures of the deck. The results of free vibration analysis show that the natural frequencies of one-way asymmetric horizontally curved bridges, in general, increase with the increase of the subtended angle of the deck. The results of earthquake response spectrum analysis show that the increase in the subtended angle of one-way asymmetric horizontally curved bridges decreases the radial displacements of the corners of the deck but increases the azimuthal displacement. These two responses both increase with the increase in the distance between the stiffness center and the curvature center.
ISSN:1077-5463
1741-2986
DOI:10.1177/1077546317726637