Loading…

An Accurate Method for Correcting Spectral Convolution Errors in Intercalibration of Broadband and Hyperspectral Sensors

The intercalibration between a broadband and a hyperspectral satellite Earth observation system requires the convolution of the hyperspectral data with the spectral response functions (SRFs) of the corresponding broadband channels. There are two potential issues associated with the convolution proce...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Atmospheres 2018-09, Vol.123 (17), p.9238-9255
Main Authors: Wu, Wan, Liu, Xu, Xiong, Xiaoxiong, Li, Yonghong, Yang, Qiguang, Wu, Aisheng, Kizer, Susan, Cao, Changyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The intercalibration between a broadband and a hyperspectral satellite Earth observation system requires the convolution of the hyperspectral data with the spectral response functions (SRFs) of the corresponding broadband channels. There are two potential issues associated with the convolution procedure. First, the finite resolution of a hyperspectral spectrum, that is, the deviation from the highly accurate line-by-line monochromatic radiances, will contribute to convolution errors. The magnitude of the errors depends on the spectral resolution and the SRF shape of the hyperspectral instrument. This type of the convolution error has not been well recognized, and there is a lack of corresponding discussion in most published papers. Although it is small as compared with the instrument accuracy of existing hyperspectral sounders, the error is deemed to be signicant when it is compared with the stringent calibration requirement imposed by future climate missions like the Climate Absolute Radiance and Refractivity Observatory (CLARREO). Second, some broadband channels are insufficiently covered by the hyperspectral data, causing spectral gaps that lead to convolution errors. Although several methods have been developed to fill the spectral gaps and hence compensate for the second type of convolution error, the correction accuracy may still need improvement especially when a large spectral gap needs to be lled. This paper presents a methodology to accurately quantify and compensate for both types of convolution errors. This methodology utilizes the available hyperspectral information to correct the scene-dependent convolution errors due to either the limited spectral resolution or spectral gaps. We use simulations to characterize the intercalibration errors between the Moderate resolution Imaging Spectroradiometer (MODIS) and current operational infrared sounders. We demonstrate that convolution errors can be effectively removed to meet the highly accurate intersatellite calibration requirement proposed by the Climate Absolute Radiance and Refractivity Observatory. Our methodology is also validated using real satellite data for the intercalibration between Aqua MODIS and Aqua Atmospheric Infrared Sounders (AIRS). Our study demonstrates that the accurate characterization and correction for the convolution errors greatly reduces the scene-dependent and spectrally dependent errors, being critical to the consistency check between Infrared Atmospheric Sounding Inter
ISSN:2169-897X
2169-8996
DOI:10.1029/2018JD028585