Loading…
VO2 film temperature dynamics at low-frequency current self-oscillations
Low-frequency (∼2 Hz) current self-oscillations were first obtained in a millimeter-sized two-terminal planar device with a vanadium dioxide (VO2) film. The film temperature distribution dynamics was investigated within one oscillation period. It was established that the formation and disappearance...
Saved in:
Published in: | Journal of applied physics 2018-02, Vol.123 (7) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Low-frequency (∼2 Hz) current self-oscillations were first obtained in a millimeter-sized two-terminal planar device with a vanadium dioxide (VO2) film. The film temperature distribution dynamics was investigated within one oscillation period. It was established that the formation and disappearance of a conductive channel occur in a film in less than 60 ms with oscillation period 560 ms. The experimentally observed temperature in the channel region reached 413 K, being understated due to a low infrared microscope performance (integration time 10 ms). The VO2 film temperature distribution dynamics was simulated by solving a 2D problem of the electric current flow and heat transfer in the film. The calculation showed that the thermally initiated resistance switching in the film occurs in less than 4 ms at a channel temperature reaching ∼1000 K. The experimental results and simulation are consistent with the current self-oscillation mechanism based on the current pinching and dielectric relaxation in the VO2 film at the metal-insulator phase transition. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.5010971 |