Loading…

Large hh-lh splitting energy for InAs/AlSb/GaSb based N-structure photodetectors

We investigate the band properties of InAs/AlSb/GaSb (N-structure) and InAs/GaSb material based type II superlattice (T2SL) photodedectors. The superlattice empirical pseudopotential method is used to define band-structures such as the bandgap and heavy hole-light hole (hh-lh) splitting energies in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2018-01, Vol.123 (2)
Main Authors: Akel, K., Hostut, M., Tansel, T., Ergun, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the band properties of InAs/AlSb/GaSb (N-structure) and InAs/GaSb material based type II superlattice (T2SL) photodedectors. The superlattice empirical pseudopotential method is used to define band-structures such as the bandgap and heavy hole-light hole (hh-lh) splitting energies in the mid-wavelength infrared range (MWIR) and long wavelength range (LWIR). The calculations are carried out on the variation of AlSb/GaSb layer thickness for (InAs)10.5/(AlSb)x/(GaSb)9-x and the variation of InAs layer thickness for (InAs)x/(AlSb)3/(GaSb)6 T2SL structures at 77 K. For the same bandgap energy of 229 meV (5.4 μm in wavelength), hh-lh splitting energy is calculated as 194 meV for the (InAs)7.5/(AlSb)3/(GaSb)6 structure compared to the (InAs)10.5/(GaSb)9 structure with hh-lh splitting energy of 91 meV within the MWIR. Long wavelength performance of InAs/AlSb/GaSb structure shows superior electronic properties over the standard InAs/GaSb T2SL structure with larger hh-lh splitting energy which is larger than the bandgap energy. The best result is obtained for (InAs)17/(AlSb)3/(GaSb)6 with the minimum bandgap of 128 meV with hh-lh splitting energy of 194 meV, which is important for suppressing the Auger recombination process. These values are very promising for a photodetector design in both MWIR and LWIR in high temperature applications.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4999632