Loading…
Homogeneous Einstein metrics on Stiefel manifolds associated to flag manifolds with two isotropy summands
We study invariant Einstein metrics on the Stiefel manifold \(V_k\mathbb{R}^n\cong \mathrm{SO}(n)/\mathrm{SO}(n-k)\) of all orthonormal \(k\)-frames in \(\mathbb{R}^n\). The isotropy representation of this homogeneous space contains equivalent summands, so a complete description of \(G\)-invariant m...
Saved in:
Published in: | arXiv.org 2018-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study invariant Einstein metrics on the Stiefel manifold \(V_k\mathbb{R}^n\cong \mathrm{SO}(n)/\mathrm{SO}(n-k)\) of all orthonormal \(k\)-frames in \(\mathbb{R}^n\). The isotropy representation of this homogeneous space contains equivalent summands, so a complete description of \(G\)-invariant metrics is not easy. In this paper we view the manifold \(V_{2p}\mathbb{R}^n\) as total space over a classical generalized flag manifolds with two isotropy summands and prove for \(2\le p\le \frac25 n-1\) it admits at least four invariant Einstein metrics determined by \(\mathrm{Ad}(\mathrm{U}(p) \times \mathrm{SO}(n-2p))\)-invariant scalar products. Two of the metrics are Jensen's metrics and the other two are new Einstein metrics. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1810.01292 |