Loading…

Spatial genetic structure of an endangered orchid Cypripedium calceolus (Orchidaceae) at a regional scale: limited gene flow in a fragmented landscape

Plant species that are capable of propagating clonally are expected to be less vulnerable to habitat fragmentation due to their long life span. Cypripedium calceolus L. is a rare, clonal, long-lived orchid species. It has suffered marked decline because of habitat loss and fragmentation and over-col...

Full description

Saved in:
Bibliographic Details
Published in:Conservation genetics 2018-12, Vol.19 (6), p.1449-1460
Main Authors: Minasiewicz, Julita, Znaniecka, Joanna M., Górniak, Marcin, Kawiński, Adam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plant species that are capable of propagating clonally are expected to be less vulnerable to habitat fragmentation due to their long life span. Cypripedium calceolus L. is a rare, clonal, long-lived orchid species. It has suffered marked decline because of habitat loss and fragmentation and over-collection, yet an IUCN report on this species does not regard fragmentation as a major threat to the species. We applied 13 nuclear microsatellites and cpDNA sequences to identify the patterns of population structure, genetic diversity and connectivity of six remnant local populations of C. calceolus in highly fragmented Gdańsk Pomerania region (N Poland). Despite severe (80%) loss of localities in the studied area we found that the local populations retain high levels of clonal (R 0.86–1) and genetic diversity (H e = 0.572). However, their differentiation is relatively high ( F ST = 0.132 for nuclear SSR and F ST = 0.363 for cpDNA) despite close geographic proximity (0.6–57 km). Bayesian clustering classified populations according to their geographic origin with little admixture. Low genetic connectivity between the remnant populations shows that the current gene flow is too low to serve as a cohesive force in a fragmented habitat, which may impede a quick response to environmental change. The species’ ability to retain ancestral variation may help withstand fragmentation, but in the light of observed extirpation rate it should be rather considered as a factor that only delays local populations’ extinction. This leads to the conclusion that habitat loss and fragmentation should be regarded as a real threat to stability of C. calcelolus populations.
ISSN:1566-0621
1572-9737
DOI:10.1007/s10592-018-1113-4