Loading…

A backward Monte-Carlo method for time-dependent runaway electron simulations

Kinetic descriptions of runaway electrons (REs) are usually based on Fokker-Planck models that determine the probability distribution function of REs in 2-dimensional momentum space. Despite the simplification involved, the Fokker-Planck equation can rarely be solved analytically and direct numerica...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2017-09, Vol.24 (9)
Main Authors: Zhang, Guannan, del-Castillo-Negrete, Diego
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Kinetic descriptions of runaway electrons (REs) are usually based on Fokker-Planck models that determine the probability distribution function of REs in 2-dimensional momentum space. Despite the simplification involved, the Fokker-Planck equation can rarely be solved analytically and direct numerical approaches [e.g., continuum and particle-based Monte Carlo (MC)] can be time consuming, especially in the computation of asymptotic-type observables including the runaway probability, the slowing-down and runaway mean times, and the energy limit probability. Here, we present a novel backward MC approach to these problems based on backward stochastic differential equations that describe the dynamics of the runaway probability by means of the Feynman-Kac theory. The key ingredient of the backward MC algorithm is to place all the particles in a runaway state and simulate them backward from the terminal time to the initial time. As such, our approach can provide much faster convergence than direct MC methods (by significantly reducing the number of particles required to achieve a prescribed accuracy) while at the same time maintaining the advantages of particle-based methods (compared to continuum approaches). The proposed algorithm is unconditionally stable and can be parallelized as easy as the direct MC method, and its extension to dimensions higher than two is straightforward, thus paving the way for conducting large-scale RE simulation.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4986019