Loading…
Brassinosteroids Regulate Growth in Plants Under Stressful Environments and Crosstalk with Other Potential Phytohormones
Brassinosteroids (BRs) are an important group of plant steroidal hormones that are actively involved in a myriad of key growth and developmental processes from germination to senescence. Moreover, BRs are known for their effective role in alleviation of stress-induced changes in normal metabolism vi...
Saved in:
Published in: | Journal of plant growth regulation 2018-12, Vol.37 (4), p.1007-1024 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Brassinosteroids (BRs) are an important group of plant steroidal hormones that are actively involved in a myriad of key growth and developmental processes from germination to senescence. Moreover, BRs are known for their effective role in alleviation of stress-induced changes in normal metabolism via the activation of different tolerance mechanisms. Efforts to improve plant growth through exogenous application of BRs (through different modes such as foliar spray, presowing seed treatment, or through root growing medium) have gained considerable ground world over. It has been widely demonstrated that the exogenous application of BRs to stressed plants imparts the stress tolerance mechanisms. In BR-induced regulation of physio-biochemical processes in plants, interaction (crosstalk) of BRs with other phytohormones has been reported. This crosstalk may fine-tune the effective roles of other hormones in regulating stress tolerance. The multifaceted role of BRs consolidated so far has reflected their immense potential to help plants in counteracting the stress-induced changes. The effects of introgression and up- and down-regulation of BR-related genes reported so far to improve crop productivity have been presented here. Strong evidence exists that BRs are involved in signal transduction particularly in the regulation of the mitogen-activated protein kinase (MAPK) cascade, which in turn is involved in controlled development, cell death, and the perception of pathogen-associated molecular pattern (PAMP) signaling. How far BRs are involved in signal transduction pathways operative under stressful environments has also been comprehensively discussed in this review. |
---|---|
ISSN: | 0721-7595 1435-8107 |
DOI: | 10.1007/s00344-018-9855-2 |