Loading…
Conjugate variables in quantum field theory and a refinement of Pauli’s theorem
For the case of spin zero, we construct conjugate pairs of operators on Fock space. On states multiplied by polarization vectors, coordinate operators Q conjugate to the momentum operators P exist. In the massive case the notion of interest is derived from a geometrical quantity, the massless case i...
Saved in:
Published in: | Physical review. D 2016-09, Vol.94 (6), Article 065008 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For the case of spin zero, we construct conjugate pairs of operators on Fock space. On states multiplied by polarization vectors, coordinate operators Q conjugate to the momentum operators P exist. In the massive case the notion of interest is derived from a geometrical quantity, the massless case is realized by taking the limit m2→0 on the one hand, on the other, starting with m2=0 directly, from conformal transformations. The norm problem of the states on which the Q’s act is crucial: the states determine eventually how many independent conjugate pairs exist. It is intriguing that (light-) wedge variables and, hence, the wedge-local case seem to be preferred. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.94.065008 |