Loading…
Conjugate variables in quantum field theory and a refinement of Pauli’s theorem
For the case of spin zero, we construct conjugate pairs of operators on Fock space. On states multiplied by polarization vectors, coordinate operators Q conjugate to the momentum operators P exist. In the massive case the notion of interest is derived from a geometrical quantity, the massless case i...
Saved in:
Published in: | Physical review. D 2016-09, Vol.94 (6), Article 065008 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c275t-2f9d1ba1b726a402d70e2a690544af61cdf7157f94ffef390d40a98fc4ed68523 |
---|---|
cites | cdi_FETCH-LOGICAL-c275t-2f9d1ba1b726a402d70e2a690544af61cdf7157f94ffef390d40a98fc4ed68523 |
container_end_page | |
container_issue | 6 |
container_start_page | |
container_title | Physical review. D |
container_volume | 94 |
creator | Pottel, Steffen Sibold, Klaus |
description | For the case of spin zero, we construct conjugate pairs of operators on Fock space. On states multiplied by polarization vectors, coordinate operators Q conjugate to the momentum operators P exist. In the massive case the notion of interest is derived from a geometrical quantity, the massless case is realized by taking the limit m2→0 on the one hand, on the other, starting with m2=0 directly, from conformal transformations. The norm problem of the states on which the Q’s act is crucial: the states determine eventually how many independent conjugate pairs exist. It is intriguing that (light-) wedge variables and, hence, the wedge-local case seem to be preferred. |
doi_str_mv | 10.1103/PhysRevD.94.065008 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2116841688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116841688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-2f9d1ba1b726a402d70e2a690544af61cdf7157f94ffef390d40a98fc4ed68523</originalsourceid><addsrcrecordid>eNo9kE1OwzAQRi0EElXpBVhZYp0ydpw4XqLyKyFREKytaWzTVInT2kml7rgG1-MkBAVYjOZbPH0zeoScM5gzBunlcn2IL3Z_PVdiDnkGUByRCRcSEgCujv8zg1Myi3EDQ8xBScYm5HnR-k3_jp2lewwVrmobaeXprkff9Q11la0N7da2DQeK3lCkwbrK28b6jraOLrGvq6-PzzhCtjkjJw7raGe_e0rebm9eF_fJ49Pdw-LqMSm5zLqEO2XYCtlK8hwFcCPBcswVZEKgy1lpnGSZdEo4Z12qwAhAVbhSWJMXGU-n5GLs3YZ219vY6U3bBz-c1JyxvBDDFAPFR6oMbYzD63obqgbDQTPQP_b0nz2thB7tpd9tPWVP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116841688</pqid></control><display><type>article</type><title>Conjugate variables in quantum field theory and a refinement of Pauli’s theorem</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Pottel, Steffen ; Sibold, Klaus</creator><creatorcontrib>Pottel, Steffen ; Sibold, Klaus</creatorcontrib><description>For the case of spin zero, we construct conjugate pairs of operators on Fock space. On states multiplied by polarization vectors, coordinate operators Q conjugate to the momentum operators P exist. In the massive case the notion of interest is derived from a geometrical quantity, the massless case is realized by taking the limit m2→0 on the one hand, on the other, starting with m2=0 directly, from conformal transformations. The norm problem of the states on which the Q’s act is crucial: the states determine eventually how many independent conjugate pairs exist. It is intriguing that (light-) wedge variables and, hence, the wedge-local case seem to be preferred.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.94.065008</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Conformal mapping ; Conjugates ; Field theory ; Operators ; Quantum field theory ; Quantum theory ; Wedges</subject><ispartof>Physical review. D, 2016-09, Vol.94 (6), Article 065008</ispartof><rights>Copyright American Physical Society Sep 15, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-2f9d1ba1b726a402d70e2a690544af61cdf7157f94ffef390d40a98fc4ed68523</citedby><cites>FETCH-LOGICAL-c275t-2f9d1ba1b726a402d70e2a690544af61cdf7157f94ffef390d40a98fc4ed68523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pottel, Steffen</creatorcontrib><creatorcontrib>Sibold, Klaus</creatorcontrib><title>Conjugate variables in quantum field theory and a refinement of Pauli’s theorem</title><title>Physical review. D</title><description>For the case of spin zero, we construct conjugate pairs of operators on Fock space. On states multiplied by polarization vectors, coordinate operators Q conjugate to the momentum operators P exist. In the massive case the notion of interest is derived from a geometrical quantity, the massless case is realized by taking the limit m2→0 on the one hand, on the other, starting with m2=0 directly, from conformal transformations. The norm problem of the states on which the Q’s act is crucial: the states determine eventually how many independent conjugate pairs exist. It is intriguing that (light-) wedge variables and, hence, the wedge-local case seem to be preferred.</description><subject>Conformal mapping</subject><subject>Conjugates</subject><subject>Field theory</subject><subject>Operators</subject><subject>Quantum field theory</subject><subject>Quantum theory</subject><subject>Wedges</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQRi0EElXpBVhZYp0ydpw4XqLyKyFREKytaWzTVInT2kml7rgG1-MkBAVYjOZbPH0zeoScM5gzBunlcn2IL3Z_PVdiDnkGUByRCRcSEgCujv8zg1Myi3EDQ8xBScYm5HnR-k3_jp2lewwVrmobaeXprkff9Q11la0N7da2DQeK3lCkwbrK28b6jraOLrGvq6-PzzhCtjkjJw7raGe_e0rebm9eF_fJ49Pdw-LqMSm5zLqEO2XYCtlK8hwFcCPBcswVZEKgy1lpnGSZdEo4Z12qwAhAVbhSWJMXGU-n5GLs3YZ219vY6U3bBz-c1JyxvBDDFAPFR6oMbYzD63obqgbDQTPQP_b0nz2thB7tpd9tPWVP</recordid><startdate>20160909</startdate><enddate>20160909</enddate><creator>Pottel, Steffen</creator><creator>Sibold, Klaus</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160909</creationdate><title>Conjugate variables in quantum field theory and a refinement of Pauli’s theorem</title><author>Pottel, Steffen ; Sibold, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-2f9d1ba1b726a402d70e2a690544af61cdf7157f94ffef390d40a98fc4ed68523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Conformal mapping</topic><topic>Conjugates</topic><topic>Field theory</topic><topic>Operators</topic><topic>Quantum field theory</topic><topic>Quantum theory</topic><topic>Wedges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pottel, Steffen</creatorcontrib><creatorcontrib>Sibold, Klaus</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pottel, Steffen</au><au>Sibold, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugate variables in quantum field theory and a refinement of Pauli’s theorem</atitle><jtitle>Physical review. D</jtitle><date>2016-09-09</date><risdate>2016</risdate><volume>94</volume><issue>6</issue><artnum>065008</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>For the case of spin zero, we construct conjugate pairs of operators on Fock space. On states multiplied by polarization vectors, coordinate operators Q conjugate to the momentum operators P exist. In the massive case the notion of interest is derived from a geometrical quantity, the massless case is realized by taking the limit m2→0 on the one hand, on the other, starting with m2=0 directly, from conformal transformations. The norm problem of the states on which the Q’s act is crucial: the states determine eventually how many independent conjugate pairs exist. It is intriguing that (light-) wedge variables and, hence, the wedge-local case seem to be preferred.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.94.065008</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2016-09, Vol.94 (6), Article 065008 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2116841688 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Conformal mapping Conjugates Field theory Operators Quantum field theory Quantum theory Wedges |
title | Conjugate variables in quantum field theory and a refinement of Pauli’s theorem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A47%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugate%20variables%20in%20quantum%20field%20theory%20and%20a%20refinement%20of%20Pauli%E2%80%99s%20theorem&rft.jtitle=Physical%20review.%20D&rft.au=Pottel,%20Steffen&rft.date=2016-09-09&rft.volume=94&rft.issue=6&rft.artnum=065008&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.94.065008&rft_dat=%3Cproquest_cross%3E2116841688%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c275t-2f9d1ba1b726a402d70e2a690544af61cdf7157f94ffef390d40a98fc4ed68523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116841688&rft_id=info:pmid/&rfr_iscdi=true |