Loading…

On the Dynamics of Tropical Cyclone and Trough Interactions

The interaction between a tropical cyclone (TC) and an upper-level trough is simulated in an idealized framework using Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) for Tropical Cyclones (COAMPS-TC) on a β plane. We explore the effect of the trough on the environment, structure, and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the atmospheric sciences 2018-08, Vol.75 (8), p.2687-2709
Main Authors: Komaromi, William A., Doyle, James D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The interaction between a tropical cyclone (TC) and an upper-level trough is simulated in an idealized framework using Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) for Tropical Cyclones (COAMPS-TC) on a β plane. We explore the effect of the trough on the environment, structure, and intensity of the TC. In a simulation that does not have a trough, environmental inertial stability is dominated by Coriolis, and outflow remains preferentially directed equatorward throughout the simulation. In the presence of a trough, negative storm-relative tangential wind in the base of the trough reduces the inertial stability such that the outflow shifts from equatorward to poleward. This interaction results in a ~24-h period of enhanced upper-level divergence coincident with intensification of the TC. Sensitivity tests reveal that if the TC is too far from the trough, favorable interaction does not occur. If the TC is too close to the trough, the storm weakens because of enhanced vertical wind shear. Only when the relative distance between the TC and the trough is 0.2–0.3 times the wavelength of the trough in x and 0.8–1.2 times the amplitude of the trough in y does favorable interaction and TC intensification occur. However, stochastic effects make it difficult to isolate the intensity change associated directly with the trough interaction. Outflow is found to be predominantly ageostrophic at small radii and deflects to the right (in the Northern Hemisphere) since it is unbalanced. The outflow becomes predominantly geostrophic at larger radii but not before a rightward deflection has already occurred. This finding sheds light on why the outflow accelerates toward but generally never reaches the region of lowest inertial stability.
ISSN:0022-4928
1520-0469
DOI:10.1175/JAS-D-17-0272.1