Loading…
Agar/PAAc-Fe3+ hydrogels with pH-sensitivity and high toughness using dual physical cross-linking
As promising structural materials, various tough hydrogels have been developed recently by incorporating various kinds of bonds. An important challenge is to use dual physical cross-linking to develop both toughness and self-recovery in a single material. Here we report smart, strain-responsive hydr...
Saved in:
Published in: | Iranian polymer journal 2018-11, Vol.27 (11), p.829-840 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As promising structural materials, various tough hydrogels have been developed recently by incorporating various kinds of bonds. An important challenge is to use dual physical cross-linking to develop both toughness and self-recovery in a single material. Here we report smart, strain-responsive hydrogels composed of a fully physically linked agarose/poly(acrylic acid)-ferric ion (agar/PAAc-Fe
3+
) double network (DN) with high toughness and pH-sensitivity. These hydrogels were fabricated in a one-pot reaction to generate dual physical cross-linking through, first, a hydrogen-bonded cross-linked agarose network, and, second, a physically linked PAAc-Fe
3+
network via Fe
3+
coordination interactions. The DN hydrogels possessed high toughness, with breaking strain of 1130%, fast self-recovery properties in ambient conditions (100% recovery in 30 min) and self-healing properties (the healed hydrogels can be manually stretched up to 700% of their original length after self-healing for 60 h from the cut-off state). In addition, the hydrogels exhibited pH-sensitivity due to the dissociation of ionic coordinate bonds between –COO
−
ions of the PAAc chains and Fe
3+
ions. Double-layer hydrogel strips with two different concentrations of PAAc formed a “C”-shaped material when initially immersed in pH 7 solution and then soaked in a pH 3 solution. These characteristics make the hydrogels attractive candidates for tissue engineering, soft actuators and flexible electronics. |
---|---|
ISSN: | 1026-1265 1735-5265 |
DOI: | 10.1007/s13726-018-0657-y |