Loading…
Sharp Analysis of Learning with Discrete Losses
The problem of devising learning strategies for discrete losses (e.g., multilabeling, ranking) is currently addressed with methods and theoretical analyses ad-hoc for each loss. In this paper we study a least-squares framework to systematically design learning algorithms for discrete losses, with qu...
Saved in:
Published in: | arXiv.org 2018-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The problem of devising learning strategies for discrete losses (e.g., multilabeling, ranking) is currently addressed with methods and theoretical analyses ad-hoc for each loss. In this paper we study a least-squares framework to systematically design learning algorithms for discrete losses, with quantitative characterizations in terms of statistical and computational complexity. In particular we improve existing results by providing explicit dependence on the number of labels for a wide class of losses and faster learning rates in conditions of low-noise. Theoretical results are complemented with experiments on real datasets, showing the effectiveness of the proposed general approach. |
---|---|
ISSN: | 2331-8422 |