Loading…

Symmetric deformed binomial distributions: An analytical example where the Boltzmann-Gibbs entropy is not extensive

Asymptotic behavior (with respect to the number of trials) of symmetric generalizations of binomial distributions and their related entropies is studied through three examples. The first one has the q-exponential as the generating function, the second one involves the modified Abel polynomials, and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2016-02, Vol.57 (2), p.1
Main Authors: Bergeron, H., Curado, E. M. F., Gazeau, J. P., Rodrigues, Ligia M. C. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Asymptotic behavior (with respect to the number of trials) of symmetric generalizations of binomial distributions and their related entropies is studied through three examples. The first one has the q-exponential as the generating function, the second one involves the modified Abel polynomials, and the third one has Hermite polynomials. We prove analytically that the Rényi entropy is extensive for these three cases, i.e., it is proportional (asymptotically) to the number n of events and that q-exponential and Hermite cases have also extensive Boltzmann-Gibbs. The Abel case is exceptional in the sense that its Boltzmann-Gibbs entropy is not extensive and behaves asymptotically as the square root of n. This result is obtained numerically and also confirmed analytically, under reasonable assumptions, by using a regularization of the beta function and its derivative. Probabilistic urn and genetic models are presented for illustrating this remarkable case.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4939917