Loading…
The absolute of finitely generated groups: I. Commutative (semi)groups
We give a complete description of the absolute of commutative finitely generated groups and semigroups. The absolute (previously called the exit boundary) is a further elaboration of the notion of the boundary of a random walk on a group (the Poisson–Furstenberg boundary); namely, the absolute of a...
Saved in:
Published in: | European journal of mathematics 2018-12, Vol.4 (4), p.1476-1490 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We give a complete description of the absolute of commutative finitely generated groups and semigroups. The absolute (previously called the exit boundary) is a further elaboration of the notion of the boundary of a random walk on a group (the Poisson–Furstenberg boundary); namely, the absolute of a (semi)group is the set of all ergodic probability measures on the compactum of all infinite trajectories of a simple random walk which has the same so-called cotransition probability as the simple random walk. Related notions have been discussed in the probability literature: Martin boundary, entrance and exit boundaries (Dynkin), central measures on path spaces of graphs [see Vershik (J Math Sci 209(6):860–873,
2015
)]. The main result of this paper, which is a far-reaching generalization of de Finetti’s theorem, is as follows: the absolute of a commutative semigroup coincides with the set of central measures corresponding to Markov chains with independent identically distributed increments. Topologically, the absolute is (in the main case) a closed disk of finite dimension. |
---|---|
ISSN: | 2199-675X 2199-6768 |
DOI: | 10.1007/s40879-018-0263-8 |