Loading…

Exact results for the Floquet coin toss for driven integrable models

We study an integrable Hamiltonian reducible to free fermions, which is subjected to an imperfect periodic driving with the amplitude of driving (or kicking), randomly chosen from a binary distribution like a coin-toss problem. The randomness present in the driving protocol destabilizes the periodic...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2018-05, Vol.97 (18), Article 184308
Main Authors: Bhattacharya, Utso, Maity, Somnath, Banik, Uddipan, Dutta, Amit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study an integrable Hamiltonian reducible to free fermions, which is subjected to an imperfect periodic driving with the amplitude of driving (or kicking), randomly chosen from a binary distribution like a coin-toss problem. The randomness present in the driving protocol destabilizes the periodic steady state reached in the limit of perfectly periodic driving, leading to a monotonic rise of the stroboscopic residual energy with the number of periods (N) for such Hamiltonians. We establish that a minimal deviation from the perfectly periodic driving in the present case using such protocols would always result in a bounded heating up of the system with N to an asymptotic finite value. Exploiting the completely uncorrelated nature of the randomness and the knowledge of the stroboscopic Floquet operator in the perfectly periodic situation, we provide an exact analytical formalism to derive the disorder averaged expectation value of the residual energy through a disorder operator. This formalism not only leads to an immense numerical simplification, but also enables us to derive an exact analytical form for the residual energy in the asymptotic limit which is universal, i.e., independent of the bias of coin-toss and the protocol chosen. Furthermore, this formalism clearly establishes the nature of the monotonic growth of the residual energy at intermediate N while clearly revealing the possible nonuniversal behavior of the same.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.97.184308