Loading…

Destruction of the spin-density-wave phase by magnetic field in a quasi-one-dimensional conductor

It is known that, in a pure one-dimensional case, the charge-density-wave phase is destroyed by a magnetic field, whereas the spin-density-wave (SDW) phase does not “feel” the field. In reality, the SDW phase is often observed in quasi-one-dimensional (Q1D) conductors due to the so-called “nesting”...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2018-06, Vol.97 (22), Article 220503
Main Author: Lebed, A. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is known that, in a pure one-dimensional case, the charge-density-wave phase is destroyed by a magnetic field, whereas the spin-density-wave (SDW) phase does not “feel” the field. In reality, the SDW phase is often observed in quasi-one-dimensional (Q1D) conductors due to the so-called “nesting” property of their electron spectra. We show that, in the latter case, a high magnetic field generates some “antinesting” term in a Q1D electron spectrum, which destroys the SDW phase. We suggest performing the corresponding experiments in SDW phases of the real Q1D organic conductors with chemical formula (TMTSF)2X (X=PF6, ClO4, etc.).
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.97.220503