Loading…

Comparative studies of band structures for biaxial (100)-, (110)-, and (111)-strained GeSn: A first-principles calculation with GGA+U approach

Experiments and calculations performed in previous studies indicate that compressive strain will increase (100)-strained GeSn's need for Sn to realize a direct bandgap when it is pseudomorphically grown on Ge buffers. To eliminate this negative effect, we systematically investigate the band str...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2015-10, Vol.118 (16)
Main Authors: Huang, Wenqi, Cheng, Buwen, Xue, Chunlai, Liu, Zhi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Experiments and calculations performed in previous studies indicate that compressive strain will increase (100)-strained GeSn's need for Sn to realize a direct bandgap when it is pseudomorphically grown on Ge buffers. To eliminate this negative effect, we systematically investigate the band structures of biaxial (100)-, (110)-, and (111)-strained GeSn using a first-principle calculation combined with supercell models and the GGA+U approach. This method has proven to be efficient and accurate for calculating the properties of GeSn. The calculated lattice constants and elastic constants of Ge and Sn are in good agreement with the experimental results. The crossover value of Sn concentration which is required to change the bandgap of unstrained GeSn from indirect to direct is found to be 8.5%, which is very close to the recent experimental result of 9%. The calculated bandgaps of strained GeSn show that the moving rate of the Γ valley is higher than those of the L and X valleys in (100)- and (110)-strained GeSn. However, the moving rate of the L valley is higher than those of Γ and X valleys in (111)-strained GeSn. Tensile strain has a positive effect on the transition of (100)- and (110)-strained GeSn, changing the bandgap from indirect to direct, whereas compressive strain has a positive effect for (111)-strained GeSn. The use of the (111) orientation can reduce GeSn's need for Sn and greatly increase the energy difference between the L valley and Γ valley. Thus, for strained GeSn grown on Ge buffers, the (111) orientation is a good choice to take advantage of compressive strain.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4933394